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Preface

This report contains experimental results for the interdiffusion
coefficient of the system, succinonitrile + water, at a number of
compositions and temperatures in the single phase region of the phase
diagram. The concentration and temperature dependence of the measured
diffusion coefficient has been analyzed in terms of Landau - Ginzburg
theory, which assumes that the Gibbs free energy is an analytic function of
its variables, and can be expanded in a Taylor series about any point in

the phase diagram. At most points in the single phase region this is
adequate. Near the consolute point (critical point of solution), however,
the free energy is non-analytic, and the Landau - Ginzburg theory fails.
The solution to this problem dictates that the Landau - Ginzburg form of
the free energy be replaced by Widom scaling functions with irrational
values for the scaling exponents. As our measurements of the diffusion
coefficient near the critical point reflect this non-analytic character, we
are preparing for publication in a refereed journal a separate analysis of
some of the data contained herein as well as some additional measurements

we have just completed. When pubIished, reprints of this article wilI be
furnished to NASA.



ABSTRACT

Interdiffusion coefficients may be determined using a variety

of experimental techniques. In this study, the interdiffusion

coefficients of succinonitrile and water were determined using the

diaphragm cell method. Since succinonitrile and water form a non-

ideal solution, their diffusion coefficients depend on concentration.

This functional form was determined by varying the concentration of

succinonitrile at a constant temperature of 60.0°C. The diffusion

coefficient at the consolute point was also studied. Experiments based

on the theory of the diaphragm cell were used to accurately

determine the diffusion coefficient at the critical composition and at

60.0°C. When the temperature was lowered to the critical

temperature, a decrease in the diffusion coefficient was observed.
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Chapter I

INTRODUCTION

There are four commonly measured transport properties of

solutions: viscosity, conductivity, diffusion, and transference

number. In diffusion, there is a transport, or flow, of mass across a

concentration gradient. Several experimental techniques are

available to determine the interdiffusion coefficient given by Fick's

First Law.

_ci

Ji = -Di_x ( 1.1 )

where Ji is the flux (moles/cm2.s), Di is the diffusion coefficient

(cm2/s) and bci/bx is the concentration gradient (moles/cm 4) of the

i th component.

One of these methods is the diaphragm cell, which allows for

diffusion by molecular motion but prevents bulk flow. For example,

if a cylinder is half filled with a solution of copper sulfate and the

rest is carefully filled with pure water so that no mixing occurs and

there is a sharp boundary between the two layers, over time, the

copper sulfate will diffuse into the water layer and water will

likewise diffuse into the copper sulfate solution. Eventually, the

solution in the cylinder will be of a uniform concentration. The

mixing of the two solutions, however, may not be limited to

diffusion, but may also be affected by the bulk flow of the solutions.

Bulk flow will obviously occur if the solutions are physically mixed

by stirring or vibration, but bulk flow can also occur more subtly by
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convection due to temperature or density gradients. If bulk flow

occurs, the rate at which mass transport occurs due to diffusion

cannot be accurately calculated.

The diaphragm cell was originally proposed by Northrop and

Anson 1 in 1928. Their design focused on separating the two

diffusing solutions by a sintered glass frit. The frit, or diaphragm,

would permit the diffusion of the components, but the small pore

size would prevent convective flows. Later, McBain 2 and others

modified this original design. McBain's cell was based on two sealed

compartments separated by a frit. One difficulty with both of these

designs, however, was that one could not be certain that the

solutions above and below the frit were uniform in composition and

that the concentration gradient was confined to the frit. It had to be

assumed that the solutions above and below the frit would mix

efficiently as a result of density changes alone. Moquin and

Cathcart 3 demonstrated that this assumption was incorrect. They

proved this by comparing the diffusion results of a cell which was

mechanically stirred with one which was not stirred. They found

large discrepancies between the two and concluded that without

mechanical stirring, the top and bottom solutions would not be

uniform. Their design, however, was unnecessarily complicated.

Stokes 4 proposed a much simpler method of stirring the cells and

his basic design is still widely used today. 5 Figure 1 represents the

cell used by Stokes, as well as the cells used in this stt_dy. The top

and bottom compartments are kept at a uniform concentration by

stir bars sweeping along the surface of the diaphragm.
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MAGNET

STIR BARS

TOP COMPARTMENT

DIAPHRAGM

BOTI_M COMPARTMENT

Figure 1. The Diaphragm Cell

In this study, the theory of the diaphragm cell was examined

and the diaphragm cell method was applied to the determination of

interdiffusion coefficients of succinonitrile and water solutions. The

purpose of these experiments was to determine the interdiffusion

coefficients, their concentration dependence, and their temperature

dependence.

The theory of the diaphragm cell predicts that the measured

intcrdiffusion coefficient will also depend on other variables,

including, to a certain extent, the concentration difference between

the two diffusing solutions. These variables were also examined.

The system of succinonitrile and water is an aqueous non-

electrolyte system that demonstrates consolute (critical) point

behavior as a function of composition and tcmperaturc. Therefore,
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in addition to studying the diffusion of solutions above the

coexistence curve, the diffusion coefficient was examined as the

solution composition and temperature approached the consolute

point. In this case, previous experiments and theory predict that as

the consolute point is approached, the interdiffusion coefficient

should approach zero.



Chapter 11

DIAPHRAGM CELL THEORY

Ao

law"

Introduction

As previously stated, interdiffusion is described by Fick's first

bc___Ai
Ji = - Di _x (2.1)

We should point out that the diffusion coefficient in the

equation above is called the interdiffusion coefficient. For the

remainder of this paper, when the term diffusion coefficient is used,

it is assumed to be the interdiffusion coefficient unless otherwise

stated. There are, however, other diffusion coefficients with

different definitions. Among the more common terms are trace

diffusion, intradiffusion, tracer diffusion, and self diffusion

coefficients. 6,7

Trace diffusion is a special case of interdiffusion. The trace

diffusion coefficient is the interdiffusion coefficient of a two

component system where one component is at infinite dilution.

Figure 2 illustrates the relationship between theses two terms where

DAB represents the interdiffusion coefficient, DAOB and DAB o are the

trace diffusion coefficients when component A and component B,

respectively, are infinitely dilute. The mole fraction of component,

A, in the figure is :_A"

The term intradiffusion coefficient was first introduced by

Albright and Mills 6. Previously, the term tracer (as opposed to

trace) diffusion coefficient had been used to describe the diffusion

5



of a small

radioisotope)

amount of isotopically labeled (frequently, a

6

DAOB

D

DBB

DAA

DA O

0 1

XA

Figure 2. Schematic Representation of Various Diffusion Coefficients

species in a system. The term, "tracer diffusion coefficient", led to

confusion, however, because the labeled species could be added to a

single or multicomponent system and the unlabeled species did not

necessarily have to be present in the system. To specify clearly the

process occurring during their experiments, Albright and Mills

defined intradiffusion coefficients. These coefficients only apply

when a small amount of an isotopically labeled species is substituted

for some of the unlabeled species in an otherwise homogeneous

multicomponent system, creating a concentration gradie-,t between

the labeled and unlabeled species. Albright and Mills also noted that

the tracer and intradiffusion coefficients would be numerically

equal, but the new term would clarify the process by which the

diffusion occurred. The tracer diffusion coefficient is represented as

D*A and D*B in Figure 2.
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Another term that describes a special case of diffusion is the

self diffusion coefficient. Self diffusion applies to the diffusion of an

isotopically labeled species which is added to a pure unlabeled

sample of the species. In Figure 2, the self diffusion coefficients are

DAA and DBB.

As already mentioned, diffusion that occurs in the water and

succinonitrile system or any other two component system is

described by an interdiffusion coefficient (some authors refer to it

as a mutual diffusion coefficient). This diffusion coefficient is the

same for both components in a fixed volume system such as the

diaphragm cell, where there is no significant change in volume upon

mixing. Mills and Woolf 8 provide a simple proof of this, which is

outlined below.

In a two component system, the flux for each component, i, is

given by Fick's first law, as in equation 2.1. When the molar flux, Ji,

is converted to a volume flux by multiplying by the partial molar

volume of each component, Vi, the sum of the two volume fluxes

must be zero if the volume of the system is to remain constant.

Therefore, we may write

or,

J1VI=J2V2 (2.2)

_Cl _C2

-D1V 1 _x = -D2V2_x (2.3)

Since the volume of the system may be written as

V = nlV1 +n2V2 (2.4)

The terms, nl and n2, are the number of moles of components 1 and

2 respectively. Dividing by volume puts the right hand side of

equation 2.4 in terms of concentration:



1 = ClV1 +c2V2 (2.5)

Taking the derivative of this equation with respect to the spatial

coordinate, x, yields

0C 1 0C2 __VVxl OV20 = vl - x + vz- -x + x (2.6)

Using the Gibbs-Duhem equation, the last two terms can be shown

to be zero. This leaves the first two terms which are now related by

equation 2.7.

O_Cl _C2

-Vf_- x = VE-ff_-x (2.7)

Comparing this result to equation 2.3, we see that, indeed, D1 = D2.

8

B. Simple Theory

Fick's first law is not particularity useful in the experimental

determination of the diffusion coefficient in the diaphragm cell.

Therefore, a theory of the cell should produce an equation that

utilizes the measurable parameters in the experiment. The simplest

treatment of the diaphragm cell theory is a stepping stone for a

more rigorous treatment.

First, the frame of reference by which the flux will be

measured must be established. One way to measure the flux in a

diaphragm cell is along a spatial coordinate parallel to the axis of

the cell. This would be a cell-fixed frame of reference. Since fluid in

the diaphragm cell is confined by gravity to occupy a fixed volume,

the flux measured from the cell's spatial frame of reference, i.e. the

diaphragm, is the same as the flux measured with respect to a

volume fixed frame of reference, if there is no volume change on

mixing. This is not true, however, of a mass frame of reference,
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since the center of mass must move in the diaphragm cell during

diffusion. Therefore, the flux referred to henceforth is based on the

cell or the volume fixed frame of reference.

Two more assumptions are necessary before the simple theory

of the diaphragm cell can be reviewed. The first of these is that

there is a steady concentration gradient throughout the diaphragm

which forms the interface between the two compartments of the

cell. Secondly, the diffusion coefficient is assumed to be constant

and therefore independent of concentration. The latter assumption

is not essential and is obviated in a more advanced theory which we

shall derive subsequently.

Examination of Fick's first law from the perspective of these

two assumptions, however, demonstrates that since the diffusion

coefficient is constant, the concentration gradient is the same at

every point within the frit. Additionally, since the concentration

gradient is steady, the flux, J, at any point within the frit is also a

constant.

The assumption that the concentration gradient, once

established, will follow the relaxation of the concentration

difference across the frit is also known as a "steady-state"

approximation5. For this reason, the diaphragm cell is classified as a

steady state method as opposed to other methods which measure

interdiffusion with a variable concentration gradient. For example,

the free interface method measures the concentration changes along

a diffusion cell where two solutions of different concentration are

brought in contact with one another. As diffusion occurs between

the two solutions, the sharp concentration boundary between them
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widens. The time development of this boundary layer is followed by

optical interference methods which depend upon the concentration

dependence of the refractive index of the solution. Specifically, in

the interference method, coherent light rays passing through

adjacent layers of solution have different optical path lengths and

when joined produce an interference pattern.

The first s_ep in deriving the simple theory of diffusion in a

diaphragm cell is to write equations for the changes in

concentration of _ top and bottom compartments. Once the two

compartments of the cell are filled with solution, and the

concentration gradient is established, the change in the

concentration of the top compartment, CT, can be represented

mathematically as the number of moles of solute entering the top

compartment per unit time, JA, divided by the volume of the top

compartment, VT

d C___T_T= J_A_A ( 2.8 )
d t VT

where A represents the cross sectional area of the frit, VT, the

volume of the top compartment and J as the flux in units of

(moles/cm2-s).

Likewise, the change in concentration of the bottom

compartment is related to the flux of solute molecules out of the

bottom by

dC.._____B_ -JA
dt - VB (2.9)

where CB and VB are, respectively, the concentration and volume of

the bottom compartment.Using Fick's first law and looking at the



concentration gradient across the entire frit

thickness, g, the flux can be expressed as

j = _ D_xC =. D(CB_ CT)

with an effective

(2.10)

Subtracting the rate of concentration change in the top from the

rate of concentration change in the bottom we have

d(CB-CT) -JA( + (2.11)
dt

and solving for J

-d(CB-CT) 1
J=

I 1
dt A(_BB + _TT)

Setting the two flux terms equal

(2.12)

Id_ C_ _ CT_

1
"- -D(CBg CT)- (2.13)

1 1

then separating variables and integrating from t = 0 to some time, t

ln(CB(0)-CT(0)) = D_A/, 1__ + 1
(CB(t)-CT(t)) g kVB VT jt

(2.14)

This equation requires that the term, g, the effective length of the

frit, be known. Since the frit consists of a porous glass material, the

path length or effective length is not simply the outside thickness of

the frit. Therefore an indirect method of determining this length is

to set all of the cell's parameters equal to one constant, which can

be empirically determined for the cell:

A 1 1

This reduces the equation for diffusion for the diaphragm cell to

11



r(CB(O) - CT(O))

ln[(cB(t) CT(t)) ] = 13Dt (2.16)

The cell constant, 13, is determined by calibration with a solution

that has a well established diffusion coefficient. Stokes4,9 performed

much of this work on calibrating cells in 1950 and these techniques

are still used todayS. The cell constant is determined by allowing a

0.5M potassium chloride solution to diffuse into pure water over a

period of time. The cell constant is then calculated by substituting

the initial and final concentration differences, the time in seconds of

the diffusion experiment, and the diffusion coefficient for the 0.5 M

KC1 solution into equation 2.16.

This treatment of the diffusion equation is based on some

assumptions that are rarely correct. In particular, the diffusion

coefficient is not independent of concentration in a non-ideal

solution.

Ideal solutions are said to follow Raoult's law and will have

uniform intermolecular forces. In other words, the intermolecular

forces of the components making up an ideal solution cannot be

differentiated and solutions made up of similar molecules such as

benzene and toluene do exhibit ideal behavior.

Most solutions, however, are not ideal and the assumption that

their diffusion coefficients are independent of concentration is not

valid. For this reason, a theory to treat concentration dependent

diffusion coefficients was developed by Gordon10 and by Stokes 9.

12

C. The Theories of Gordon and Stokes



Gordon l0 realized that for a non-ideal solution, the diffusion

coefficient in equation 2.16 was not the actual diffusion coefficient,

D(c), for a particular concentration, c, but was instead, an average

over time of all diffusion coefficients present within the diaphragm.

Therefore, Gordon proposed a relationship between D(c) and D =

D', the integral (average) diffusion coefficient measured in equation

2.16. This relationship is given in equation 2.17.

The symbols

compartments' arithmetic mean concentration over the length of

the diffusion experiment. In this equation, D' represents an

approximation to the average of the actual diffusion coefficients

present in the diaphragm over time and is not exact. The

concentrations, _--B and C T, do not represent the time average

concentrations present over the length of the run because the

concentrations change rapidly at first and then less rapidly as the

concentrations approach one another. The actual average over time

of concentrations present in either compartment probably lies

closer to the final concentration than the arithmetic mean

concentration does.

D'= (_B - _T)CrJD(c ) dc (2.17)

CB and CT represent the bottom and top

Although it is not exact, Gordon and Stokes claimed that this

approximation could be used to produce results accurate to within

.02%. A summary of the technique used by Stokes is presented
below.

13



First, the general form of the actual diffusion coefficient is

represented graphically as in Figure 3. This figure is not meant to

represent the exact form of the diffusion coefficient. In fact, the

exact nature of D(c) is not known at this time in the development of

this method. If we set up a diffusion experiment such that the initial

concentrations for the top and bottom are CT(0) and CB(0)

respectively, and the final concentrations are CT(t)and CB(t), then,

when the compartments are of equal volume, the mean

concentrations of the top and bottom compartments are CT and CB,

as shown in Figure 3.

14
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concenlratJon

Figure 3. Diffusion Coefficient versus Concentration

By equation 2.17, the integral diffusion coefficient, D', is just

the mathematical average of D(c) between CT and CB. Notice,

however, that the final and mean concentrations depend on how

long the diffusion experiment runs.

Next a hypothetical diffusion experiment is used such that the

top compartment is filled with pure solvent, i.e. CT(0)=0, and the



bottom compartment is filled with some concentration, c. This

hypothetical experiment is allowed to run for an infinitely short

period of time, thus the hypothetical nature of the experiment. The

average concentrations of the top and bottom would be be the same

as the initial concentrations, 0 and c respectively. Using equation

2.17, the integral diffusion coefficient for this hypothetical run

would be given by

C

1 _ D(c) dcD'°- c
0

(2.18)

where the superscript represents the infinitely short nature of this

run.

Writing equations for two such experiments where the bottom

concentrations are CB and CT from Figure 1, we get

m

Cr
1

f D(c) dc
D'°(CT) = _T 0

(2.19)

m

CB
1

J"D(c) dc= 0
(2.20)

Equation 2.20 may also be written as

Cx CB

'[jD'°(_B) = _BB D(c) dc + D(c) dc] (2.21)

The two integrals in this equation may be substituted with

other terms. Equation 2.19 is substituted for the first integral in

equation 2.21 and equation 2.17 is substituted for the second

integral. The result of these substitutions is equation 2.22.
1 -

D'°(C'B) = _BB [CT D'°(_T) + (CB-CT)D'] (2.22)

15
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Simplifying this further, the following equation represents one

of Stokes's central results used in approximating values for D(c):

_-T [D'-D'*(_'T)] (2.23)
D'*(_B) = D'- _B

Next, D' versus concentration is plotted and extrapolated to

infinite dilution. The values of CB, CT, and D' in equation 2.23 are

taken from actual runs. Then, using the curve of D' versus

concentration, a value for D"(_T)is obtained by assuming it is

approximately equal to D'(_T). Substituting these four values into

equation 2.23, produces a value for D'*(_B). After repeating this

procedure for each of diffusion experiment, at each concentration,

CB, it is possible to graph D'*(_B) versus CB. Stokes's D'*(_B)results

were within 1% of the values for D' that he had previously plotted.

When the derivative of equation 2.18 is taken, the result is

equation 2.24.
dD'*

D(c) = D'*+c dc (2.24)

Equation 2.24 is used to find the actual diffusion coefficient. Since

the derivative of this equation is the slope of the D'* at some

concentration, all of the terms in equation 2.24 can be taken from

the graph of D'*.

Stokes tested his results for D(c) by running experiments in

which the top compartment was filled with a solution of known

concentration, not pure solvent. Then he compared the value of D'

he measured, with the value of D' he expected to get by integrating

his curve of D(c) between the two mean concentrations as in

equation 2.17. He found excellent agreement between the two

values of D'.
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D. Baird's Theory

A more rigorous theory of the diaphragm cell was developed

by Bairdll,12 In this theory, the diffusion equation has been

evaluated in terms of a new variable, average concentration of the

cell. The derivation of the general case, when the top and bottom

compartments are not necessarily equal in volume, is presented

below.

The volume average concentration within the diaphragm cell is

a constantl0 throughout the length of the diffusion experiment and

may be represented as

_= (VBCBct_ + VTCTft) )
(VB + VT) (2.25)

Also, the time rate of change of concentration in the top and bottom

compartments is rewritten from equation 2.8 and 2.9

dC__.T_T JA

d t - VT (2.26)

d____. -JA

d t VB (2.27)

Fick's law is also rewritten, but now, represents the concentration

dependent nature of the diffusion coefficient

_c

J = -D(c) _xx (2.28)

After seperating variables and preparing for integration, the

equation becomes

£ CB(t)

J'Jax- -  D(c)dc (2.29)
0 CT(t)
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Because J is independent of x, the left hand side of equation 2.29

may be integrated, but without knowing the form of D(c), the right

hand side cannot be integrated at this time. Continuing on as in the

simple theory, equations 2.26 and 2.27 are subtracted to yield

1 1
d[CI3(t)-CT(t)] _JA(_BB + _TT) (2.30)dt =

Using equation 2.29 to substitute for J, and equation 2.15 to

substitute for the cell constant, equation 2.30 becomes

CB(t)
d[CB(t)-CT(t)]

=-13 JD(c)dc (2.31)
dt

CT(t)

At this point the integral in equation 2.31 is prepared for a Taylor

series expansion about _, by substituting for CB(t), CT(t), and dc.

Defining the concentration as c=y+_, we get dy=dc because _" is

constant. The upper integral limit becomes CB=Y+_, and solving in

terms of y, Y=CB-_'. Substituting for c as given in equation 2.25, the

upper and lower limits become

VT(CB-CT) (2.32)
Y = VT+VB

VB(C_-CT) (2.33)
Y = " VT+VB

To simplify expansion and integration, a new variable, x, is defined

such that x=(CB-CT)/(VB+VT), or x=Ac/(VB+VT). Equation 2.31 is

now

VTX

=(VB+ = )dy
-VBX

(2.34)
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Expanding D(y+_) in a Taylor series about _ yields

D(y+_') = D(_,) + D(1)(_')y +
D(2)(_-) y2 _ D(n)(E ) yn

+
2! n-3 n!

(2.35)

Substituting equation 2.35 into the integral of equation 2.34 and

then integrating, the result is

Vrx

I D(y-i-_ ) dy

-VBX

= D(_) [VB+VT] x + D(1)(_ ")[VT 2 VB2]X 2
2 - +

D (n)(_) )n+ 1 1
nffiZ (n+l)! [(Vr)n+l-(-VB ] xn+

(2.36)

When the expression for x is substituted back into equation 2.36,

the result is

--d_t = _- D(n)( _ )c -[_D(_)Ac[I + n=l D(_ )(n+l)!
(V-r"+1-(vs)"+l) ac"]

(VT+VB)n+l

(2.37)

Since (dtldAc)=l/(dAc/dt), taking the reciprocal of equation 2.37

yields

dt _( 1 ) 1
dAc -[_D(a)Ac

.,,, n+l .., .n+l.

[1+ _. (n;Dn(_) (VT "t-VB) )-nl--_'.I)(e) ]
nffil (VT+VB)n+I Ac

(2.38)

Expanding the second term on the right in a geometric series such

1 Z2 Z3
that (I+Z) = 1- Z + - +..., then equation 2.38 may be rewritten



20

in terms of this series. After grouping like ordered terms, the

diaphragm cell diffusion equation is:

dAcdt -I_D(_I )Ac [1 t'D(1)(_2-_ )(VT2-VB2)_= - +
)tVT+VB)

(-D(2)(_)(VT3+VB 3)
)(VT+VB) 3

D(1)(_ )VT2-VB2]2)Ac 2 +
+ [2D(_ )(VT+VB )2

(2.39)

When the left side is integrated from 0 to t and the right from AC(o)

to AC(t), the equation becomes

1 AC0 [ D(')(_) (VT2-VB 2) ](AC(0) AC(t))
t = I3D(_ ) lnAct " 2!I_(D(_)) 2 (VT+VB) 2

+ [ -D(2)(_) (VT3-VB 3) 1___!____[D(1)(_) (VT2"VB2) )2] ((AC(0))2 _ (AC(t))2)
2o3!_D(_ )2 (VT+VB)3 + 2_D(_ ) _2!(D(5)) (VT+VB) 2 _!

o ot

(2.40)

This is the general diaphragm cell equation. It can be evaluated

further for the special case when VT=VB. When this is true, the

coefficients of all odd ordered powers of AC are zero, and the

diffusion equation becomes

1 AC0 D(2)(E )

t = [3D(_ ) InAct - 48[_D(_) 2 ((AC(0))2 - (AC(t))2)+ "'"

(2.41)

The most significant result of this equation is found by comparing it

to the equation 2.16 for the simple diaphragm cell theory equation,

which assumed no dependence of D on concentration. If this is the



case, equation 2.41 may be rewritten with D(c) = D', and becomes

simply

1 AC(o) (2.42)
t = _---D-7In AC(t)

since all concentration derivatives are zero. Thus in the case that

the diffusion coefficient does not depend upon concentration, the

rigorous equation reduces to equation 2.42.

When D is a function of concentration, however, all of the

higher order terms become correction terms that depend on the

nature of D(E ). These correction terms are an infinite series and for

the case where VT=VB are limited to the even powers of Ac. Baird

has pointed out that the number of correction terms that should be

included is left to the experimenter to determine but in any case,

should never exceed the number of data points. 11,12 Hall and

Knight 13 state that in an infinite series such as the equation 2.41, if

AC(0) is small enough, then we may choose the last term kept and be

assured that the sum of all terms that follow is some small fraction

of the last term.
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E. The Second Ordered Term

Without a priori knowledge of the nature of D(c), the

experimenter does not know how many data points must be taken

or how many correction terms to include. Therefore, an

examination of the second ordered term was made to see what

effect this term might have on the measured diffusion coefficient.

The hope was that by evaluating the second ordered term,

-experimental conditions could be determined so that the effect of
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this term, or any higher ordered term, would be negligible. We

started with equation 2.41 and, dropping the terms that contribute

to any correction greater that the second order, we have

I _ D_2)(_")

t = ISD(_ ) InAc(t) - 48_D(E) 2 ((AC(0))2 - (AC(t))2) (2.43)

Also, from the simple theory of the diaphragm cell we have

1 . AC__Qg.I (2.44)
t = I3D' mAC(t)

where D e represents the measured diffusion coefficient. Then

setting the two equations equal we have

1 ACf0) _ 1 AC_0) D(2)(e)
I3D' MAC(t) - I_D(E ) MAC(t) - 4813D(E) 2 ((AC(0))2 - (AC(t))2)

(2.45)

Factoring out (I/_I)In(AC(o)/AC(t)) we have

1 = 1 - D(2)(c) (AC(0)2 - AC(t)2) (2.46)

D' D(_ ) 48(D(e))2 In(AC(0)/AC(t))

Replacing the coefficient of the second order term, Dt2)(_)/48D(_) 2,

with A and factoring out (AC(0)) 2, the equation may be represented

as

1 1 [((AC(t))2/(AC(o)) 2) - 1 ]
- A (AC(0)) 2 (2.47)

D' - D(g ) In(AC(o)/AC(0)

[((AC(t))2/(AC(0)) 2) - 1 ]
Replacing the term

ln(AC(o)/AC(t))

x=AC(o)/AC(0 and fix) = (x "2 1)/In(x).

1 1

D' D(E )
- A (AC(o))2 f(x)

with f(x) where

(2.48)



Noting that the coefficient term, A, depends only on D(c) evaluated

at E and that AC(0) is determined by the experimental conditions, we

can evaluate the second order correction term by examining the

nature of f(x). A plot of this function is shown in Figure 4. The

values of x can vary from 1 (when t=0), to infinity (when AC(t)

approaches zero at equilibrium). When x=l, the function f(x), is an

indeterminate form, but by L'Hopitals Rule, its value is calculated as

-2. As x increases, f(x) approaches 0.
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Figure 4. The Diminishing Second Order Term

0

From Figure 4, it is apparent that any second order effects are

diminished as the diffusion experiment proceeds, i.e., AC(0)/AC(t)

increases. If the experiment is allowed to run for a period of time

such that x is very large, then f(x) would be small. In order to

determine the total effect of allowing the experiment to run a very



long period of time, we compared two examples where the value of

A is some unknown constant.

In the first example, AC(0)equals 0.5M and the diffusion

experiment runs until AC(t) is approximately 0.167M so that x = 3

and f(x) = -0.4. Substituting these two values into the second

ordered term, we see it becomes -0.2A. In the second case, we set

AC(0) = 5.0M. In order to see the same second order effect as in the

first case, f(x) must equal -0.008 which translates to a value of

5x10-50M for AC(t). This is clearly beyond the sensitivity of any

analytical method. We, therefore, conclude that the easiest way to

control the second order effect without some prior knowledge of A,

i.e. D(_), is to minimize AC(0) within the limits of the analytical

methods available to measure concentrations. Additionally, unless

D(2)(_ )

48D(_)2is small, we may still find a second order effect that we

cannot diminish without extremely accurate quantitative techniques.
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F. nth Ordered Term

When we examine the diffusion equation in the form stated

earlier, we note it is an infinite series:

d__.L.t- 1 Z2 Z3
dAc - -13D(E )Ac [1 - Z + - +...] (2.49)

We also note that Z is a representation of an infinite series such that

Z= D*(_') (VT*÷L(-VB) )AC n = an xn (2.50)

n=l (n+l)!D (_') (VT+VB) n+l n=l

By using the multinomial theorem 14, we are able to arrive at a

means of determining the coefficient of any n th ordered term
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without manually expanding both of these series to such a point that

all possible n th ordered terms are included.

First, if we consider the multinomial theorem which states that

the coefficient, An, of the nth order term in the multinomial

expansion of (alxl+a2x2+a3x3+...) p, where p is a positive integer, is

given by the formula

p! m 1 m2 mj
An = _ml! mE! ...mj! [ al a2 ... aj ] (2.51)

The sum is taken over ml to mj such that the following conditions

on mj are met:

1) p=_mj

2) n = _jmj

for j=l to n-p+l

for j=l to n-p+1

The symbol mj refers to the number of times the jth ordered term of

the polynomial is used to generate the nth ordered term of the

expansion. For example, in squaring the polynomial above (p =

2)there are two ways to generate the 4 th ordered term. In the first

case, one must use the term a2x 2 two times (m2 = 2), and in the

second case, one must use alx 1 once along with a3x3 once

(ml=l,m3=l). The whole nth ordered term can thus be represented

as

An x m l + 2m2 + ...jmj = Anx n (2.52)

This holds true for an infinite series where the power, p, to which

the polynomial is raised is fixed. In the case of the diaphragm cell

equation, however, we have an infinite series of these polynomials,

represented by Z. Within this series, the polynomials are raised to all

possible powers. We must not only sum the possible coefficients for

a particular term when the multinomial is raised to a power, p, but
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also include all possible powers to which the mulitnomial may be

raised. It

An= X__., P! ml m2 mj
p=l ml! m2! ...mj! [ al a2 ... aj ] (2.53)

The first sum is taken from p=l to an upper limit of p=n. This limit

has been set to exclude any coefficient terms which could not

possibly contribute to the n th order coefficient. For example, in a

search for all contributing components of the 7th order coefficient

(n=7), we can exclude any term of the 8th order expansion or

higher. The second sum is taken with the same conditions as we

applied to equation 2.51.

Our formula for calculating the nth ordered coefficient is

useful if there were some easy way of calculating all values of mj

such that the conditions of [mj]P are met. Fortunately, the groups of

m j, known as partitions and represented by _t, meeting the

conditions of [mj]P are tabulated by Abramowitz and Stegun. 14

Abramowitz and Stegun have also gone to some length to provide

nth order coefficient solutions to more complex multinomials but do

not include a general formula for a multinomal resembling ours.

With the partitions tabulated by Abramowitz and Stegun, it is

possible to determine the factor p!/ml!m2!...mj!. These factors are

shown in Table 1 for all partitions up to an 8th order expansion of

our multinomial. The term M, represents p!/ml !m2 !...m j!.

Additionally, using the table of partitions, the correct coefficients of

the terms in the polynomial, al, a2, etc. may be selected. In the case

of the diffusion equation, these coefficients refer to the terms in the

expression for Z as given in equation 2.50.
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Table 1. Partitions and Coefficients

n

1

2

3

4

5

6

7

p _ M n p
1 1 1 7 5

1 2 1

2 12 1

1 3 1

2 1,2 2

3 13 1

1 4 1

2 1,3 2

22 1

3 12,2 3

4 14 1

1 5 1

2 1,4 2

2,3 2

3 12,3 3

1,22 3

4 13,2 4

5 15 1

1 6 1

2 1,5 2

2,4 2

32 1

3 12,4 3

1,2,3 6
23 1

4 13,3 4

12,22 6

5 14,2 5

6 16 1

1 7 1

2 1,6 2

2,5 2

3,4 2

3 12,5 3

1,2,4 6

1,32 3

22,3 3

4 13,4 4

12,2,3 1

1,23 4

2

6

7

x M

14,3 5

13,22 1 0

15,2 6

17 1

1 8 1

2 1,7 2

2,6 2

3,5 2

42 1

3 12,6 3

1,2,5 6

1,3,4 6

22,4 3

2,32 3

4 13,5 4

12,2,4 1

12,32 6

1,22,3 1

24 1

5 14,4 5

2

2

13,2,3 20

12,23 10

6 15,3 6

14,22 15

7 16,2 7
8 18 1



Also note that this is a general solution to the general

diaphragm cell equation. If we look at the special case were V1

equals V2, we may use the same solution but drop the odd ordered

terms of Z. For example, if we want to determine the fourth ordered

term using Table 1, we select all partitions for n = 4. There are 5

different possibilities but three of these can be dropped because

they include odd partitions. The odd partitions for the case where

V1 = V2 result

in the volumes in the numerator cancelling each other out.

Therefore, the fourth ordered coefficient becomes

[E_M(a 1x la2x2.., ajrnj)]Ac4 =

D(2)I_
[ [ "D(4)(8) 1 [_ , t 2__] 2 ]((AC(0))4 (AC(t))4)

(2.54)
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G. Concluding Remarks on The Diaphragm Cell Theories

The theories of Gordonl0, Stokes 9, and Bairdll,12 point out

several factors that influence the value of D' as measured

experimentally using the simple theory diaphragm cell equation. The

theories have been derived differently yet result in many of the

same conclusions about the value of D' with respect to different

experimental factors.

First, Gordon and Stokes imply that D' is affected by the length

of the experiment since the length of the diffusion run affects how

much of the D(c) curve is being averaged. Two experiments, initially

identical, would be expected to yield different D' values if they ran

for different lengths of time because they would have different
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mean, as well as final, concentrations. Baird's theory states this

explicitly, as we can see from the term AC(t) appearing after

integration of equation 2.39.

Secondly, AC(0) is also important in both theories. If we look at

Gordon's assumption that D' is an average of the actual diffusion

coefficients present in the diaphragm over time, then as AC(0)

approaches zero, AC(t) approaches zero, and the diffusion

coefficient, D', approaches the actual diffusion coefficient D(c) at

this concentration. This is illustrated graphically in Figure 5. This

effect of AC(0) is also explicitly stated in Baird's theory, since all

correction terms involve AC(0). As AC(0) approaches zero, the

correction terms also approach zero and D', the measured diffusion

coefficient, approaches D(_).

D

C_ C_

concen_a_n

Figure 5. The Effect on D' as AC Diminishes

If we examine the effect of AC(0) more closely, we see a

difference between the two theories. If we begin with Gordon and

Stokes, we can compare two hypothetical experiments with AC's, as



illustrated in Figure 6. In experiment 1, the curve of D(c) is rather

flat in the region of AC(t). Therefore, regardless of the magnitude of

A C(t), the average (measured) diffusion coefficient D' will closely

resemble the value of D(c). Next, if we look at experiment 2, we see

that with the same AC(t) given, there is less agreement between the

average diffusion coefficient, D', and the value of D(c) because the

slope is so great. In other words, the first derivative of D(c) between

the average top and bottom concentrations also plays a role in how

well D' represents D(c).

30

/

D //

C T C _ C T C B

experimen_ 1 expeximenl 2

concenlra_on

Figure 6. The Effect of Slope on D'

In Baird's theory, there are no odd order derivative terms

when V I=V2. Instead, it is the second and higher even order

derivatives that influence whether or not D' resembles D(6). The

source of this discrepancy is not immediately clear. Nor is it

apparent how significant this difference actually is. Despite this one



difference, both theories point out factors effecting D' that were not

apparent in the simple theory.

H. Thermodynamic Theories of Diffusion

The theories discussed so far are based on a kinetic approach

to diffusion. This is the basis of Fick's Law. This approach, while

allowing us to determine experimentally the diffusion coefficients as

a function of concentration, does not explain or predict the

behavior of the diffusion coefficient as a function of concentration.

Additionally, when the diffusion of liquids with critical point

behavior is studied, the diffusion coefficient is found to drop to

zero as the critical temperature, T c, is approached. This phenomena

is not addressed in Fick's law.

A more general approach to diffusion is based on

thermodynamics. One of the first theories founded upon the

thermodynamic properties of solutions was developed by

Onsager 15. In fact, Onsager predicted diffusion coefficients would

approach zero as the critical temperature and composition are

approached, before it was observed experimentally.

Turnerl6,17 developed a simple approach that will be reviewed

here. In Turner's theory, molecules move around as a result of

forces acting upon them. For isothermal interdiffusion, the force is

the chemical potential gradient, and the velocity of molecules is

proportional to this force. More specifically, when ui is the mobility

of component i, and is the chemical potential gradient, then the

velocity of component i is given by

(2.55)
Vi = Ui _X
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Also, the flux of component i is Ji =CiVi SO the flux, written in terms

of chemical potential is

_i (2.56)
Ji = ci ui O x

Converting chemical potential to activity, the term for flux becomes

dlna___.____ (2.57)
Ji = ui ci RT d x

This equation may also be written as

dln ai din Xi din ci
Ji = ui ci RT

din Xi din ci dx

Where Xi represents mole fraction. This equation reduces to

(2.58)

din ai din _i dci

Ji -'- ui RTdl n Xi dln ci dx (2.59)

When this equation is compared to Fick's law, the expression for Di

becomes

din ai din _i (2.60)
Di = ui RTdl n _i din ci

This expression predicts that the diffusion coefficient equals zero at

din a i equals zero at this point. The
the consolute point since din ci

systems of n-hexane - nitrobenzene and triethlyamine - water have

both been extensively studied 18 and demonstrate this dependence.

At a temperature other than the critical temperature, the

din a i The
diffusion coefficient depends on the form of din _i

din ai and temperature can be demonstrated
relationship between din Xi

by taking the derivative of the chemical potential with respect to the

natural logarithm of mole fraction, In ;_1, for the case of a regular

solution



P,i= ]/i ° + RT In Z 1 + co Z2 2

Therefore, the derivative becomes

Din _tl = RT bin al
Oln Z 1 Din _ 1

= RT - 2coZl(1-Z1)

Din al

Using co = 2RT c the term_l n _ 1
reduces to

Din T cal
- 1-4 _----X1Z2

.It-

(2.61)

(2.62)

(2.63)

Additionally, for a regular solution at the consolute composition,

Z l=Z2=0.5, so that the equation becomes

Din al [T-TC 1 (2.64)

Cusslerl9, however, criticizes this relationship because

equation 2.64 does not accurately predict the manner in which the

diffusion coefficient varies with temperature. The diffusion

coefficient has been shown, experimentally, to vary in an other than

linear manner. Turner's theory however, predicts a linear

relationship.

Another thermodynamic approach uses a Taylor expansion of

the Gibbs free energy. Lupis 20 uses this technique to evaluate the

behavior of the coexistence curve and spinodal line but the theory

can be extended to develop an equation for the diffusion coefficient.

First, we may rewrite equation 2.60 in terms of mole fraction,

D1 = ul X1X2 _ (2.65)

The symbol Zi, is the mole fraction of component, i. Using the Gibbs-

Duhem equation, nld_tl + n2dla2 = 0, the diffusion coefficient can be

33
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put in terms of a single composition variable. When the Gibbs-

Duhem equation is divided by the total number of moles, nl+n2, the

nl n2
d_tl + -- d_t2 = 0 (2.66)

nl+n2 nl+n2
nl

X 1 = , and thenl+n2

result is

Using the definition of mole fraction,

relationship, X1 = 1 -X2, we can show

D 1 = ul Z22 dl.t2
dx 2

(2.67)

Next, the Gibbs free energy, G, is defined in terms of the Gibbs free

energy per mole of solution, g, by

G = (nl +n2)g (2.68)

Using equation 2.68, the chemical potential defined in terms of the

Gibbs free energy per mole of solution is

_G _[(nl + n2)g]

g2 = _ n 2 = _ n 2 (2.69)

The right hand side of equation 2.69 can also be written as

____2dx2 dx2 dx2 Xl theseg + (nl+n2) dn----2-' and dn2 written as dn2 = nl+n2" Using

two equations, the chemical potential becomes

_t2 = g + dg (l_x2) (2.70)
dx 2

Taking the derivative of I.t2 with respect to the composition of

component 2, the result is

_%2 = X1 0X22 (2.71)

When this equation is substituted into equation 2.69, the form for

the diffusion coefficient becomes



35

(2.72)
D1 = ul Z22Z1 _22

Next, we take the Taylor series expansion of g(g2,T) about (x2C,T c)

to yield

g(x2,T) = g(x2C,T c) + gx(X2C,T c) (X2-g2c)+ gT(X2C,T c) (T-T c) +

1

_.t[gxx(x2C,TC)(x2-g2c) 2 + 2gxT(g2C,TC)(x2-x2C)(T-T c) +

gTT(Z2c,Tc)(T-Tc) 2] +

l[gxxx(g2C,TC)(z2-g2c) + 3gxzT(Z2C,TC)(g2-x2c)2(T-T c) +

3gzTT(g2c,Tc)(g2-g2c)(T-Tc) 2 + gTTT(Z2c,Tc)(T-Tc) 3] +

1
_._[gxxxx(g2c,Tc)(z2-x2c) 4 + 4gxXZT(Z2-Z2c)3(T-T c) +

6gxxTT(X2C,TC)(x2-x2c)2(T-TC)2 + 4gzTTT(Z2C,TC)(z2-z2c)(T-Tc)3

+ gTTTT(Z2c,TC)(T-TC) 4] + ... (2.73)

The subscripts, X and T, on g refer to the degree of

differentiation of g with respect to g and T, respectively. Since we

are expanding about the critical composition, the second and third

derivatives of the molar Gibbs free energy with respect to

composition are zero 20. When the second derivative of the molar

Gibbs energy, as expanded above, is taken with respect to X2, many

terms become zero. The final result is

O2g(g2c,Tc) 1
= gzxT(X2C,TC)(T-TC)+ _- gxzTT(X2c,Tc)(T-Tc) 2 +

1
gzzzT(g2c,Tc)(g2-X2C)(T-T c) + _- gxzzz(g2C,TC)(g2-g2c) 2 + ...

(2.74)

When this result is substituted back into equation 2.72, the diffusion

coefficient becomes
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1
D1 = Ul X22Zl [ gxxT(X2C,TC)(T-TC)+ _- gXXTT(z2c,TC)(T-TC) 2 +

1

gxzxT(Z2C,TC)(X2-z2C)(T-T c) + _- gxxxx(z2C,TC)(z2-x2c) 2 + ...]

(2.75)

With this result, it is possible to examine the effect of approaching

the critical temperature if x2is set at the critical composition. In this

case, only the first two terms would remain but the equation can

easily be extended to include higher ordered terms. These two terms

represent both a first and second order relationship between

diffusion coefficients and temperature, that is, if we assume that the

series converges, and we can ignore the higher ordered terms that

have been left out. With this theory, we are not limited to a simple

first order relationship between temperature and diffusion as we

were with Turner's theory.



Chapter III

EXFERIMENTAL

A. The Diaphragm Cell

The diaphragm cells used in this study are of the same design

used by Stokes 4. The cells were constructed so that the top and

bottom compartments were nearly equal in volume, varying in

volume by less than 1%. The top and bottom compartment volumes

were approximately 60 ml each. Since the volumes are assumed to

be equal, we were able to restrict our data analysis to theories

where VT=VB.

The two compartments of our ceils were separated by glass

frits obtained from Chemglass. The frits were made of glass beads

about 10 to 15 microns in diameter. The top and bottom

compartments were closed off by ground glass stoppers.

There appears to be some disagreement as to whether or not

st0p-cock grease applied to ground glass stoppers affects the

diffusion coefficients. Hartely and Runnicles 21 found that stop-cock

grease could cause erratic results in the diaphragm cell

determination of diffusion coefficients. Gordon 10 found that careful

cleaning of the diaphragm to remove any trace of stop-cock grease

was sufficient to ensure precise results, and Stokes 4 chose to use

rubber stoppers to avoid using stop-cock grease.

When stop-cock grease was not used with our cells, the ground

glass stoppers would occasionally stick in the neck of the opening.

Therefore, during some runs, stop-cock grease was used. The

37



38

amount of grease used was minimal and care was taken to avoid

contact between the solutions filling the compartments and the

grease placed on the stoppers.

Stir bars were placed in the compartments and rotated by two

permanent magnets fixed to a U-frame which was turned by a

Talboy Model 134-1 motor. The speed of rotation of the U-frame

was controlled by adjusting the voltage supplied to the motor. The

stir bar in the bottom compartment floats while the bar in the top

compartment sinks. In both compartments, the bar rests gently

against the diaphragm. Figure 2.1 represents the general diaphragm

cell set up used for these experiments.

Moquin and Cathcart 3 demonstrated that stirring the solutions

in each compartment has an obvious effect on the measured

diffusion coefficient. Stokes 4 later demonstrated that the speed of

rotation had an effect on the measured diffusion coefficient up to a

speed of 25 RPM. Between 25 and 80 RPM, the measured diffusion

coefficient had leveled off and did not change. Stokes concluded

this to be a result of complete compartment mixing at speeds of 25

RPM and greater. In each of our experiments, the stir bars were

rotated at speeds that varied slightly between 40 and 50 rpm.

B. Temperature Control

The diaphragm cells were kept at a constant temperature

throughout the diffusion period. Temperature control was achieved

by the use of water baths designed by Clunie 22. These baths

consisted of an insulated fish tank filled with a water/ethylene

glycol mixture. Ethylene glycol was added to reduce evaporation at
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the operating temperatures, which were as high as 60°C. The bath

water was circulated by a propeller mounted to a Talboy Model 105

stirring motor. Philadelphia Roto-Stat Company Differential Range

Thermoregulators were placed in each bath and set at the desired

temperature. The thermostats were relayed through a DynaSense

Model 2149, or Model 2149-20, which controlled the heating

element. The temperatures were held to within 0.05°C of the

thermostat's setting. The thermoregulators were actually able to

control temperatures to within 0.005°C. The limiting factor,

however, was the accuracy of the thermometers.

C. Solution Preparation

Succinonitrile, NCCH2CH2CN, was obtained from Aldrich

Chemical Company. Although the succinonitrile was marked as 99%

pure, it arrived slightly discolored and with a distinctly pungent

odor indicating impurities. Succinonitrile is essentially odorless and

clear in it's pure form. GC/MS analysis showed the principle

impurity to be NC(CH2)3CN. Therefore, the as received material was

purified by redistillation. Distilled water with a conductivity of

approximately 1.5 mho/cm was deaerated before the succinonitrile

and water solutions were prepared. The water was either deaerated

by a water vacuum pump or by boiling. Boiling proved to be the

fastest and easiest way to deaerate the distilled water. Careful

deareation immediately prior to solution preparation was necessary

to avoid air bubbles from forming in the diaphragm cell after

reaching thermal equilibrium in the heated water baths. In some

cases, despite careful deaeration, a bubble formed in the diaphragm
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cell after the diffusion experiment was started. Extremely large

bubbles (approximately 0.1 ml in volume) in the bottom

compartment were removed by stopping the experiment and

replacing the bubble with solution.

The solutions were prepared by weight to the appropriate

initial concentrations. The density data for succinonitrile and water

solutions collected by Frazier and Facemire 23 were used to convert

weight percent water to concentration and visa versa. Since the

solutions were to be used at approximately 60°C, we used the

density of succinonitrile and water solutions at 60.8°C. This

temperature was the closest to our actual operating temperatures.

We assumed any effects on the actual density, as a result of using

the slightly higher temperature data, would be negligible.

The solutions and the diaphragm cells were pre-warmed to a

temperature of 60°C This procedure was necessary to minimize

phase separations that could occur at temperatures below the

consolute temperature of 56.17 °C. In general, the bottom

compartment and frit were filled first with the higher concentration

solution. Then the top compartment was filled with its solution.

Once the cells were filled with solution, they were placed in the

heated baths. The diffusion period was assumed to begin at this

point, although technically, the concentration gradient within the

frit takes some time to become established. The time required for a

concentration gradient to achieve a steady state is on the order of

several hours so it could be safely assumed that this time would be

negligible compared to the length of the run, which took from

several days to a week. Additionally, after the first run with a



particular cell, there was already an established concentration

gradient so that when the compartments were filled for the next

run, there was no requirement for a pre-diffusion period to relax

the gradient to the new conditions. Before filling, for a second run,

the compartments were carefully cleaned, however, to remove any

excess solution or moisture that may have been present from a

previous run. There was no attempt at washing out the solution

remaining in the frit. The pre-warmed solutions were then poured

into their appropriate compartments with the higher concentration

solution always filling the bottom compartment. Nearly all diffusion

experiments were run back to back in this manner. Moreover, there

was no obvious difference in the "first run" diffusion coefficients

and the subsequent run diffusion coefficients.
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D. Cell Constants

The cell constant for each diaphragm cell was calculated using

the method described by Stokes4. ' New cells were washed with

boiling concentrated hydrochloric acid to remove any impurities

and then repeatedly flushed with distilled water until conductivity

measurements confirmed that no more acid was present. Next, the

bottom compartment was filled with 0.500M KC1 solution and the

top was filled with water. The compartments were stirred for at least

two hours to allow a concentration gradient to form in the frit.

Since these runs lasted a comparatively short period of time, it was

important to allow the concentration gradient to form prior to

starting the diffusion period. Once the concentration gradient had

formed, the top and bottom compartments were emptied and



42

refilled with the KCI solution and water. The cell and cell holder

were placed in a water bath kept at 25°C. The diffusion period lasted

one to two days. When the diffusion run was terminated, the top and

bottom solutions were collected and analyzed by conductimetric

methods. The experiment was repeated to verify the cell constant.

Before using the cells for succinonitrile and water diffusion

experiments, the cells were, once again, washed repeatedly with

distilled water.

E. Analytical Methods

One of the greatest difficulties that had to be overcome was to

develop a quantitative analytical method to determine the amount

of water or succinonitrile in the top and bottom compartments after

diffusion. Previous work by Clunie 22 on a Kjeldahl method to

determine the amount of succinonitrile proved to be tedious and

frequently inaccurate. Attempts to quantify the amount of

succinonitrile by UV-Vis_le spectroscopy also proved inaccurate

due to succinonitrile's extremely small extinction coefficient in the

ultraviolet region. Quantitative analysis by gas chromatography-

mass spectroscopy also failed to give reproducible results 22.

An azeotropic distillation method developed by Bidwell and

Sterling 24, however, provided fairly consistent results, accurate to

within 1%. As this method requires between 5 and 12 grams of

solution, the diffusion experiment was terminated in order to

sample the top and bottom concentrations. Extraction of small

samples throughout a diffusion experiment, by contrast, would

provide much more information and greater flexibiltiy.
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The amount of water present in a pre-weighed sample of the

solution was determined by distilling with toluene. Water is denser

than toluene and was collected in a graduated Dean and Stark flask.

The calibration curve in Figure 7 was calculated from known weight

percent water samples of succinonitrile and water. This curve was

used to determine the weight percent water of the unknown top and

bottom solutions. From that information, the concentration of the

solution at 60°C was calculated.
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Figure 7. Calibration Curve for Quantitative Distillation

F. Succinonitrile Recovery

Succinonitrile was recovered from the toluene and

succinonitrile mixtures left over from the distillation method as well

as unused succinonitrile and water solutions. Most of the toluene

and water could be distilled from the solutions using conventional
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methods. The material from the conventional distillations was

further vacuum distilled to recover pure succinonitrile.



Chapter IV

RESULTS AND DISCUSSION

A. Introduction

We began our experiment with the goal of examining the

observed diffusion coefficient near the consolute point. As a result

of our preliminary experiments at the critical composition, we

realized that there were several variables affecting the observed

diffusion coefficient and expanded the scope of the experiment to

examine the effects of these variables. Our results will be presented

in three parts. The first part is based on Baird's theory of the

diaphragm cell and the second order effect discussed previously. We

studied the effect of AC(0) on the observed diffusion coefficient, D'.

The second part of our study was to determine the nature of D' as

concentration varied, and to draw some conclusions about D(c).

The final part dealt with diffusion coefficients as the consolute point

was approached by lowering the temperature.

B. AC(0)

The effect of AC(0) was examined at two different

concentrations. First, we studied AC(0) at the critical concentration

(51.81 weight percent water, or 5.904 M succinonitrile). The

temperature for each diffusion run was 60.0"C which is about 4

degrees above the consolute point. The results of our experiment

are shown below in Table 2.
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Table 2: Diffusion Coefficients at _=5.9M as AC(o) Varies

ACo(M) ACtfM) _(M] D'(10-6 ¢m 2 8-1)

1.996 1.806 5.903 2.01

1.996 1.635 5.903 2.39

1.996 1.671 5.903 1.97

4.442 3.502 5.902 2.27

5.659 4.430 5.898 2.52

6.885 4.991 5.899 3.49

8.106 5.765 5.895 4.93

9.339 6.617 5.898 4.59

11.818 5.172 5.909 5.76

11.818 5.542 5.909 7.35

We assumed that the variation in the diffusion coefficient is a

result of the second order effect and that any higher order effect

was negligible in comparison to the second order effect. In order to

test this conclusion, we plotted the data according to the second

1 1 D(2)(_ ) [(AC(t)2]AC(0) 2) - 1]

D-; = D(_ ) 48(D(_ ))2 (AC(0)) 2 ln(AC(0)/AC(t) ) (4.1)

The values of D', AC(o), and AC(t) were taken from the

experimental data. If our assumption of a second order effect were

correct, we would expect to find a straight line when this equation is

plotted. The graph would have a slope of [D(2)(_ )/48(D(_ ))2] and a

y-intercept of 1/D(ff). Such a graph is shown in Figure 8.

Figure 8 shows that there is apparently, a significant second

order effect at the critical composition. Some scatter about the

straight line was observed and this is assumed to be because of

order effect equation
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experimental error in calculations of AC(t ), although it is possible

that the next order (fourth) effect may have had some influence on

the results. This approach has also been used on other systems, with

satisfactory results. 25
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Figure 8. Second Order Effect at C = 5.9M

The second order effect was also examined at a point away

from the critical region. For these experiments, an average

concentration of 3.5 M was chosen. The results from these diffusion

runs are presented in Table 3.

The data in Table 3 lack sufficient precision to form a straight

line when plotted in Figure 8. The average diffusion coefficient for

the five different runs was 6.48x10 -6 cm 2 see -1. Also, the diffusion

coefficients range from only 5.41x10 -6 to 7.16x10 -6 cm 2 sec -1



Therefore, we conclude that at an average concentration of 3.5M,

there is a negligible second order effect.

Table 3: Diffusion Coefficients at E=3.5 M as AC(0 ) Varies

ACo(M) ACt(M) D' (10 "6

3.000 1.524 7.16

4.000 2.154 5.41

5.000 2.555 6.88

6.000 3.419 5.85

7.000 3.532 7.12

cm 2 s-l)

Since there was no significant effect on D', however, we

concluded that the actual second derivative of D(fi) at C=3.5M is

quite small and minimized any second order effect regardless of

AC(0).
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C. D(c)

The study of D(c) began by determining D' at various

concentrations. These diffusion runs were conducted at 60.0"C, with

_C(0)=4M. Each run lasted approximately 4 days. Figure 9, illustrates

the relationship between the integral diffusion coefficient, D', and

mean concentration. The general shape of this curve agrees with

previous studies on non-electrolyte systems 5. We also note that a

minima occurs near the critical composition, which has also been

observed in other systems were the components exhibit critical

point behavior.5

The third order best fit equation for these points was

determined to be

D'xl06 = 40.4 - 15.8 _ +2.0 _2 7.8x10-2 _3 (4.2)
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Figure 9. Diffusion Coefficients as a Function of Concentration

We attempted to extract D(c) from measured values of D' as a

function of concentration by applying the Stokes method 9 to our

data. Since our experiments did not begin with pure water in the top

compartment, we had to make several approximations in order to

arrive at diffusion coefficients corrected to zero time as Stokes had

done. For example, the diffusion coefficient at a mean bottom

concentration of 11.42M corrected to zero time was determined by

using the following equation:
11.42

1
D'*(CB=ll.42) = l 1.42 [ fD dc +

8.54

8.54 4.54 .54

j'Ddc + ;Ddc + .[Ddc ]
4.54 .54 0

(4.3)
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The first integral was substituted with (11.42 8.54) D'(c'=10) which

represents an actual experiment. The last three integrals were

substituted with (CT-CB) D'(CT2CB-- ) where the value of D'(Cs-_B)- was

approximated from the curve of D' versus c'. Table 4 lists the values

used to calculate the curve for D '° at CB using equation 2.23.

Table 4. Concentrations and Diffusion Coefficients

Top Concentrations Bottom Concentrations

initial final average initial final average D'

8.00 9.08 8.54 12.00 10.85 11.42 8.44

7.50 8.37 7.94 11.50 10.49 1 1.00 6.64

6.50 7.11 6.81 10.50 9.87 10.18 5.31

5.50 6.02 5.76 9.50 9.00 9.25 3.04

4.50 4.69 4.59 8.50 8.25 8.38 1.66

3.5 0 3.95 3.7 2 7.50 6.98 7.27 2.8 9

2.5 0 2.93 2.7 2 6.50 5.96 6.23 3.9 9

1.5 0 2.26 1.8 8 5.50 4.62 5.06 5.4 6

1.00 2.05 1.52 5.00 3.90 4.45 8.00

0.50 1.71 1.10 4.50 3.29 3.90 13.41

0.00 1.34 0.67 4.00 2.60 3.30 16.58

Once the values of D'* at CB had been calculated, they were

plotted against CB. Figure 10 illustrates this result. The best fit third

order equation for this curve is

D '° = 52.6 - 13.1 c + 1.33 c 2 - 4.54x10 "2 c 3 (4.4)

Using this equation for the curve, it's first derivative was taken

and used in equation 2.24 to arrive at values for D(c). The results of

these calculations are shown graphically in Figure 10. This graph of

D(c) is obviously incorrect since it yields negative values for D(c).
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One very likely cause of this error is the method used to

calculate D'* at CB. Our evaluation of equation 4.3 required several

approximations as already mentioned. Stokes only made one such

approximation; that is he assumed that D'(CT) could represent

D'*(CT). The more approximations, the greater the induced error in

the final result, a weakness in the Stokes method which has been

pointed out by Miller 26. Although Miller concludes that the Stokes

method be restricted to dilute solutions, we have attempted to apply

the Stokes method to solutions with concentrations up to nearly

100% succinonitrile.

Although application of the Stokes method did not improve

the accuracy of the diffusion coefficients, there are two reasons why

we can assume that our measured diffusion coefficients, D', are a

close approximation to the actual diffusion coefficients, D(c). First,

the general form of the diffusion coefficients versus concentration

agrees with previous studies near the critical point 27. Second,

corrections due to the second order effect when AC(0 ) is 4M, and the

average concentration is 5.9M, are less than 6 % of the differential

diffusion coefficient as calculated by equation 4.1.

D. The Diffusion Coefficient as T e is Approached

The last series of experiments were designed to determine the

behavior of the diffusion coefficient at the consolute composition as

T approaches T c. Therefore, the variables affecting the apparent

diffusion coefficient, namely initial concentration difference,

concentration, and length of each diffusion run were held constant.

The initial concentration difference was 4.0 M, each run lasted



approximately 4 days, and the average concentration was the critical

composition, 5.904M. We also ran parallel diffusion experiments at

an average composition of 6.5M so that we could compare results

and determine if the diffusion experiments at the critical

compositon exhibited any unusual behavior as compared to a non-

critical composition. The results of the critical composition

experiments are listed in Table 5.

Table 5. Diffusion Coefficients as the Consolute Temperature is

Approached

Temperature/'C D' (10-6 cm 2 s-l)

60.0 2.02

60.0 2.14

59.0 1.95

58.0 1.73

57.0 2.09

56.5 1.18

56.3 1.89

56.2 1.32

If the results are plotted, there is some considerable scatter

among the points. The results show, nevertheless, that the diffusion

coefficient decreases as the critical temperature is approached. We

also noted that the results of the comparison experiments at an

average concentration of 6.5M showed the same general decrease in

the integral diffusion coefficient, D', as the temperature was

lowered.

In these experiments, we were trying to measure fine

differences in the integral diffusion coefficient, D'. Much of the

scatter we see in the data is a result of experimental error. Because

53



we chose to work with an initial concentration difference of 4M, we

increased our experimental error. Although this will be discussed in

the next section, had we used a larger initial concentration

difference, we might have been able to determine the exact

relationship between the measured diffusion coefficient and

temperature.
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E. Error Analysis

The error in determining the integral diffusion coefficient, D',

has been examined by several authors. Mills and Woolf8 have

summarized these studies. Equation 2.16 is used to calculate the

diffusion coefficient. When written again, where D' is solved for, we

have

= 1 [-(CB(0) - CT(0))
D' 13t lnt iCB_ CT(t)) ] (4.5)

There are errors in the measurement of 13, t, and the concentrations.

However, if the cell is carefully calibrated, the error involved in

determining 13 is small and can be considered negligible in

comparison with the error in determining concentrations. Likewise,

the error associated with time is also negligible in comparison to the

error in concentrations since the diffusion experiments usually

lasted 4 days and the time was determined accurately to within a

few seconds. The longer the diffusion experiment runs, the smaller

the relative error in measuring the time.

The largest contributor to random error is the concentration

measurement. Stokes 9 analyzed this error and found it to be

greatest when the concentration ratio was smallest. Stokes
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concluded that the optimal initial conditions occurred when the top

compartment is filled with pure solvent, which serves to maximize

the concentration ratio. He also noted that in an attempt to

minimize the initial concentration difference, so that the differential

(actual) diffusion coefficient is measured, there is a large increase

in the error of D'.

In our experiments, we attempted to minimize the initial

concentration difference so that our measured diffusion coefficient

more accurately approximated the actual diffusion coefficient. In

doing so, however, we thus increased the relative error. We realized

this to some degree during the experiments and that is why we

chose an initial concentration difference of 4M instead of smaller

values we had also worked with. The error was greatest in the higher

concentration ranges where our smallest initial concentration ratio

was 1.5. Based on Stokes's calculations, this would have resulted in

the error in D' being twenty times the error in measuring

concentrations. Fortunately, at lower concentrations the error in D'

would only have been three times the error in concentration

measurements. Based on the calibration experiments, the

uncertainty in determining concentrations by the distillation method

was approximately 0.4 weight percent water at a concentration of

3.5M which equals an uncertainty of 0.05 M. Assuming the relative

error in concentration was the same for all concentrations, then the

uncertainty in the diffusion coefficient at an average concentration

of 3.5 M would be nearly 7 x 10 -7 cm2s -1 This means that at a

concentration of 3.5M, the measured diffusion coefficient was

within approximately 10% of the actual value of D'.
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The error in D' can be reduced in several ways by changing the

experimental techniques. One way to reduce the error is to increase

the initial concentration ratio. This would mean that in many of the

experiments, the value of D' measured is within the Stokes data

analysis scheme less closely related to D(c'), however, the value of

D' measured would be more accurate. A second method of reducing

the error in D' is by using a quantitative analytical technique that

has a higher degree of precision. We could not find such a method

for the succinonitrile and water system. The last way to reduce the

relative error in D' would be to perform several diffusion runs at an

average concentration and take an average value of D' for that

concentration.



Chapter V

CONCLUSIONS AND SUGGESTIONSFOR FUTURE WORK

A. Conclusions

We have demonstrated a second order effect which confirms

the theory of Baird.11,12 The second order effect experiments

conducted at the critical composition while AC(o) is varied,

established the differential diffusion coefficient at that

concentration and at 60.0°C. This method was useful in determining

one diffusion coefficient value, but in order to determine the

functional form of the differential diffusion coefficient, numerous

runs at different average concentrations would have to be made.

Therefore, although the second order effect method could be used

to determine all differential diffusion coefficients, it would be

extremely time consuming to do so.

We have determined the composition dependent nature of the

interdiffusion coefficient at 60.0°C. That composition dependence

demonstrates curvature as predicted by the Taylor series

development of the Gibbs free energy. The experiments calculating

D' at various concentrations are slightly inaccurate because of the

experimental error involved in the analytical technique. We are

confident, however, that the curve of D' versus c represents a close

approximation to the actual form of D(c). As mentioned in the error

analysis section, some of this error can be minimized by choosing

the appropriate experimental conditions. The system of

succinonitrile and water, however, will always have a significant
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error in D' as long as azeotropic distillation remains the most

accurate analytical method available.

As a result of experimental error, we were unable to determine

the form of the diffusion coefficient's temperature dependence.

There was a modest decrease in the diffusion coefficient as the

critical temperature was approached, but we were unable to apply

the thermodynamic theories to this result.

B. Suggestions for Future Work

Based on the conclusions listed above, any future experiments

involving a fixed average concentration and varying temperature,

should first be examined for a second order effect. Once the second

order effect is established, the value of AC(o) should be increased to

a maximum and the second order effect used as a correction to the

measured diffusion coefficient, D'. If possible, the top compartment

should always be filled with pure solvent. This will minimize error

and help resolve the temperature dependence of the diffusion

coefficient.

Also, the temperatures at which the diffusion experiments

were run could be varied more. In addition to the temperature runs

at 60.00C, runs at 65.0°C, and possibly 70.0°C, might help establish

the temperature dependence of the diffusion coefficient.
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